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External electric or magnetic fields can hybridize rotational states of individual dipolar molecules and
thus create pendular states whose field-dependent cigenproperties differ qualitatively from those of a
rotor or an oscillator. The pendular eigenfunctions are directional, so the molecular axis is oriented.
Here we use quantum statistical mechanics to cvaluate ensemble properties of the pendular states.
For linear molecules, the partition function and the averages that determine the thermodynamic func-
tions can be specified by two reduced variables involving the dipole moment, field strength, rota-
tional constant, and temperature. We examine a simple approximation due to Pitzer that employs the
classical partition function with quantum corrections. This provides explicit analytic formulas which
permit thermodynamic properties to be evaluated to good accuracy without computing energy levels.
As applications we cvaluate the high-ficld average orientation of the molecular dipoles and field-
induced shifts of chemical equilibria.

For dipolar molecules in low J states, the rotational motion often can be arrested by
cxternal clectric or magnetic ficlds of feasible strength!2. Instead of tumbling end-over-
end, the molecules then become trapped in pendular states, with the molecular axis
confined to libratec over a limited angular range about the field dircction. In this way
substantial spatial orientation of the molecular axis can be attained for the lowest pen-
dular states. These states exhibit sui generis features that can be observed spectroscopi-
cally, including ficld-dcpendent cigencnergies and marked intensity variations among
transitions governed by the directional eigenfunctions.

Pendular orientation of polar molecules in electric ficlds is applicable to linear, sym-
metric and asymmetric top rotors; thus this method greatly surpasses in chemical scope
the clectric ficld focusing technique, which is limited to symmetric tops®. Magnetic
pendular states can be obtained in analogous fashion for many molecules with nonzero
clectronic orbital momentum®. This includes large classes of molecules not accessible
to the electric technique, particularly paramagnetic nonpolar molecules and molecular
ions.
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The characteristic features of pendular states have been demonstrated in prototype
spectroscopic cxperiments® ~ ° and employed to study reactions of oricnted mole-
cules™1°, Since pendular states can be created for individual molecules, pendular orien-
tation is not limited to molecular systems out of cquilibrium. This contrasts with most
other techniques for producing anisotropic distributions of either the figure axis or the
angular momentum of molecules. Ensemble propertics of pendular molecules thus can
be described by means of equilibrium quantum statistical mechanics. In this paper we
give such a treatment and discuss some prospective applications.

Some Properties of Pendular States

For simplicity we consider a lincar molecule without clectronic angular momentum, but
the chief results can be extended to other categories by standard means. The eigenener-
gics of the ficld-free rotor states |J, M ) are given by

E, = BJ{J+1), 0)

where B is the rotational constant, J is the total angular momentum quantum number,
and M the projection on the space-fixed Z-axis. By virtue of the different orientations
of the J-vector, these energy levels arc (2J + 1)-fold degenerate. Pendular states are
coherent superpositions or hybrids of the ficld-free rotor states, created in response to
the interaction between a dipole moment directed along the molecular axis and an ex-
ternal ficld. The interaction potential is given by

V(0)/B = -wcos0 @

in units of the rotational constant, where 0 is the angle between the molecular dipole
moment p and the direction of the field and o = u¥/B is the dimensionless interaction
parameter, with ¥ the strength of the external ficld, whether electric, £, or magnetic, 4.

The pendular states, |i, M; ), arc labelled by the good quantum number M and the
nominal value ofi, the angular momentum of the ficld-free rotor state that adiabatically
correlates with the high-ficld hybrid function, |J, M; » — 0) — |J, M). For fixed
values of J and M the pendular state depends solely on the interaction parameter w
which determines the range of J involved in the hybrid wavefunction. Figure 1 sum-
marizes these features in terms of a corrclation diagram between the ficld-free rotor
states (m — 0) and the harmonic librator states (w — ). For large w, the pendulum
cigenstates become increasingly directional with energics that differ greatly from the
rotor levels. In the harmonic limit (0 — ) the levels become (N + 1)-fold degenerate
with cigenencrgics

Ey = Bl-0 + N+1)2w)"?Y, A3)
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where N = 27 - | M| is the total number of the librator quanta; J - | M | is the number
of 0-nodes (in the range 0° — 180°) and | M | the number of g-nodes (in 0° — 360°).
Figure 2 shows for @ = 5 the typical pattern of energy levels, in contrast to the free-
rotor and harmonic librator limits. Qualitatively, the lowest states within the cosine
potential well are libratorlike whereas those appreciably above the barrier top (0 ~
+180°) become rotor-like.

The Pendular Partition Function

We consider a canonical ensemble of molecules and as usual take the translational,
clectronic, vibrational, and rotational or pendular modes of motion as separable (al-
though the Born—Oppenheimer approximation is somewhat less accurate in the
presence of a strong field). For a given mode of molecular motion at temperature T, if
Boltzmann statistics applies the occupation number n; of the i-th energy level with
energy E;above the ground level Ejand degeneracy g;is given by

n; exp[-(E; - Eg)/KT |

]
— 8i Q ’ (4)
where
Q = 2 8 exp[-(E; - Eo)/kT] )
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is the canonical molecular partition function pertaining to the given mode and »n is the
total number of molecules in the ensemble possessing that mode. In general, for the
pendular mode the exact partition function of Eq. (5) must be evaluated numerically,
since as scen in Fig. 2 the spacing of the energy levels is not simple except in the
frec-rotor and harmonic librator limits. However, since the encrgy levels for any field
strength are proportional to the rotational constant B, the partition function and related
quantitics depend only on a reduced temperature, 9 = kT/B, in addition to the reduced
intcraction parameter, o = p¥/B.
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Figure 3 shows Q(w,9) for = 0, 5, 20, and 100 as determined from computations
using a program that generates the pendular eigenencrgies’. For the ficld-free case
(w = 0), corresponding to Eq. (1), the partition function is simply that for a rigid lincar
rotor,

0

Q@ = 2J+1)exp[-JU +1)/7]. 6)

J=0

In the high-ficld or harmonic librator limit (w — ), corresponding to Eq. (3), the
partition function becomes that for an isotropic two-dimensional oscillator with fre-
quency B(2w)?; thus

Qi = S (N+1)e™ = (1-c2, )
N=0

where « = (20)"?/9. At a given temperature, the presence of the ficld is seen to reduce
the partition function markedly below that for a free rotor, but except in certain regions
(w large but 9 not too large) it differs substantially from that for a harmonic librator.

Since the population of the ground state is rclated to the partition function by ng =
n/Q, we sce from Fig. 3 that at a given temperature ny grows as o increases and the
cnergy levels are drawn further apart. Because the lowest rotational states arc hy-
bridized most easily, such “condensation” of molccules into the low-lying states occurs
at ficld-strengths substantially lower than those required to attain the harmonic librator
limit.

We find that a simple procedure utilizing the classical limit as well as Q| and Oy,
provides a remarkably accurate analytic approximation for the complete partition func-

FiG. 3

Total partition functions Q(w,Y)
determined from Eq. (5) for pendular
mode (full curves), as functions of
reduced temperature v = kT/B for
four values of reduced interaction
strength, o = pF/B. The ficld-free
limit (w = 0) pertains to the rota-
tional partition function Q , of Eq.
(6); the high-ficld limit (dashed
curves) to the harmonic librator (HL)
function Qy;, of Eq. (7). By virtue of
the logarithmic ordinate scale, these
plots also show the ncgative of the
Helmholtz free energy function,
-F/RT; cf. Table 1
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tion. This procedure, introduced by Pitzer in treating hindered internal rotation'!, re-
casts the partition function as the product of three factors:

0,9 = [Quila [Q H . ®
rot llh

Thesc factors enable a neat separation of variables: the first factor is independent of the
field and depends only on 9 = kT/B; the second factor depends only on the ratio w/9" =
w¥/kT; the third to a very good approximation only on u = (2w)"?/y. Furthermore,
explicit analytic expressions are readily obtained for each of the three factors. Hence
the partition function and thermodynamic propertics can be evaluated to good accuracy
without actually determining the ficld-dependent cigencnergies or computing the sums
called for in Eq. (5). We consider the threc factors in turn.

The ficld-free factor, [Q,y ], is the classical limit of the rotational partition function
of Eq. (6), given by

[Qi)y = QukT/h?)4n = kT/B = o, (€))

where A is Planck’s constant and / the moment of incrtia, rclated to the rotational
constant by B = i?/2I, with It = h/2m.

The sccond factor, [Q/Q, ], is the ficld-dependent portion of the classical partition
function. The classical counterpart of Eq. (5) takes the form

ch - Ql qu)f(/—u(l—nns()) sin 0 dO . (10)

Here for brevity we denote by Qg the ficld free portion, given in Eq. (9). In the Boltz-
mann factor of Eq. (10), the potential energy of Eq. (2) is replaced by w(1 - cos 0), in
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order to refer the energy zero to the potential minimum, as appropriate for the classical
case. The integral is given explicitly by

Qu e *sinh o

2" o tn

as a function of the ratio o = /9" = u¥/kT. Figure 4 plots this function, which ap-
proaches unity as o — 0 and approaches 1/(2c) as o — . Included for comparison is
the corresponding result for the planar pendulum case, for which Q; = (n9)'? and
Q4/Q¢ = e”Iy(a), with I the modificd Bessel function. The planar pendulum, solvable
in terms of Mathieu functions, has long been employed in treating hindered internal
rotation in molecules!? as well as an approximate model for the interaction of rotating
molecules with an electric field%!3,

The third factor, [Q./Qqlip, serves to correct the classical version of the partition
function for the effects of quantization. For this we find it is a very good approximation
1o use the ratio of Qy;, for the harmonic librator, as given in Eq. (7), to its classical limit
(u = 0). Accordingly, the correction factor is simply I'2, where

u
l-e’

(12)

Figurc S displays a test of the approximation. The ratio of the exact quantum partition
function from Fig. 3 (for m = 5, 20, 100) to the classical version from Eq. (10) is seen

10 10
1n [Qexact/Qcl] In (Qg/Qcilib
6 6
4 J4
2 42
0l 0
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I, §
Points give ratio of exact partition function for a spherical pendulum, as calculated from Eq. (5) for
potential of Eq. (2), to the classical partition function from Eq. (10), for » = 5 (), 20 (A), and 100
(#); full curve gives quantum correction factor I'2 computed for harmonic librator from Eq. (12).
Corresponding points for a planar pendulum were obtained from tables of Pitzer and Gwinn'?, and
compared with correction factor I' for a one-dimensional harmonic oscillator
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to depend essentially only on u and to agree closcly with I'2, the librator ratio. Similar
agrecment obtains for the planar pendulum, for which the correction factor is just ', in
accord with the tests provided by Pitzer and Gwinn'? in terms of thermodynamic func-
tions. Although Q,;, is not a good approximation to the partition function for either a
spherical or a planar pendulum, except for large values of u (cf. Fig. 3), the quan-
tum/classical ratio for the quadratic librator potential mimics very well that for the
cosine potential almost over the full range. The exception occurs for very low values of
the reduced temperature, 9 < 1, when both o« — o« and « — o; then the librator ratio
becomes much too large. In practice, this is not a significant limitation, since such low
values of o very seldom obtain.

We note two other instructive aspects of Pitzer’s procedure. The quantum partition
function of Eq. (5) and the classical version of Eq. (10) employ different origins for the
energy scales, respectively the lowest level and the potential minimum. The correction
ratio of Eq. (12) automatically takes account of this diffcrence because in InT" the
lcading term as « —> 0 is u/2; that has just the effect of shifting the energy zero from the
lowest quantum level to the bottom of the potential curve'4. Also, at low temperatures
(low 9) the quantum rotational partition function diffcrs appreciably from the classical
valuc of Eq. (9). A correction for this can be made by inserting in Eq. (8) another
factor, the ratio of the quantum Q,, to its classical limit. Unless w is zero or much
smaller than %, however, such a correction is not warranted. When o is appreciable, the
correction ratio derived from the librator limit, I'? for the spherical case or T for the
planar casc, simulates the net cffect of quantization for both the bound and unbound
states of the cosinc potential (cf. Fig. 2) and fully accounts for the pendular degree(s)
of frcedom.

The Thermodynamic Functions

Since the Helmholtz free energy F, internal energy U, entropy S, and heat capacity C
arc derived from the logarithm of the partition function'?, the factorization provided by
Eq. (8) gives the contributions of the pendular mode to all such functions P as a sum
of three terms, each dependent on a single dimensionless reduced variable:

D = D) + Dyla) + D). (13)

Table I lists these terms. The thermodynamic functions are as usual per mole rather
than per molecule, so the gas constant R appears (rather than Boltzmann’s constant k).
As the function pertain to a nominal ideal gas, the Gibbs frce energy is givenby G = F
+ RT, the enthalpy by H = U + RT, and the hcat capacities at constant pressure and
volume are related by C, = C, + R. The contribution from the pendular mode thus is the
same for G and F, for H and U, and for cither heat capacity.

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



2466 Friedrich, Herschbach:

For convenience, we list the conversion factors relating the physical parameters in
customary units to our dimensionless variables. With temperature in K, rotational con-
stant B in cm™!, electric dipole moment . in Debye units and clectric field strength £
in kV/cm, or magnetic dipole moment p, in Bohr magnetons and magnetic field
strength # in Tesla units (= 10 kGauss), we have:

9 = 0.6961T/B
w; = 0.0168 u,E/B
w, = 0.4668 /B (14)

with ot = @/ and u = 2w)/y .

Figure 3 illustrates the field-dependence of the Helmholtz free energy, as —F/RT =
In Q. The results obtained from the Pitzer procedure of Eqs (8) and (13) coincide with
our numerical calculations employing Eq. (5) within the width of the plotted curves.
Figures 6 — 8 show corresponding results for the internal energy, entropy, and heat
capacity. In the presence of the field, the frec energy and heat capacity increase, the
internal cnergy and entropy decrease. Table II gives the lcading terms for expansions
that describe the field-induced changes for small o or large 9. For sizable o values, the
transition from dominantly librational motion at low temperatures to largely rotational

TABLE |
Thermodynamic functions, P(w,7) = O(P) + Py(a) + Dyy(u)

P(w,7) ®(9) Py(a) Dyyr(u)
RI—;, =-InQ ~lny -In %:“] +a —ZIn[1 _“c_u]
RL;‘ - Ta:)ﬂr 1 1 - acotha + a Z(C_Hu_ L l)
%-% 1 +Iny ln[&:‘q] + | - acotha 2In[1 _ue_u] + Z(C_uu_ o 1)
%-%(73%) 1 1 —az(cothzu— l> 2@1‘12_6:7— 1
w = uf/B v = kT/B a = wly um=(2 )y
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motion at highcr temperatures is evident in all the thermodynamic functions, but
becomes most striking in the prominent bumps that appear in the temperature depend-
ence of the internal energy and heat capacity.

Previous discussions of quantum statistical mechanics for molecules subject to elec-
tric or magnetic ficlds go back to Debye!'® and Van Vieck!” but have been limited to the
weak-ficld casc, corresponding to a quadratic Stark or Zceman cffect. The partition
function is then near the classical limit, and the results are essentially equivalent to
those including just the terms up through order a? in our Table II. By means of the
Pitzer procedure, however, it proves casy to attain good accuracy for the full range of
interaction strengths.

TasLE 11
Weak-field expansions of thermodynamic functions
AF o® o u
RT a- (1-30+...) —2(2—24+...)
AU o o u u?
RT L= -5+ '2(2"12" )
AS a? o? u?
R l—a—6(1—10+...) +2(12—...
AC a? o? u?
— —(-—+.. 2| -
R 1=+ (12
2
Ukt |
1F
05}
0
0.1
FiG. 6

Internal energy, U/RT, for a spherical pendulum as a function of reduced temperature, computed
from Eq. (13) with factors listed in Table I, for @ = 0, 5, 20, and 100. Dashed curves show the
harmonic librator (HL) limit. Figure 3 shows the corresponding curves for the Helmholtz free energy
function, -F/RT
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Although our treatment here is restricted to linear molecules without electronic angu-
lar momentum, we expect that more general cases can also be handled by augmenting
standard mcthods with the Pitzer procedure. Often the classical partition function can
be readily evaluated and separated into convenient factors!® and the simple harmonic
oscillator form for the quantum correction seems likely to be serviceable whenever the
potential becomes quadratic in a suitable limit!2,

Ensemble Average of Molecular Orientation

The venerable Langevin-Debye function'®!” describes the average orientation of a
Boltzmann distribution of rotating rigid dipoles not intcracting with cach other but sub-
ject to an external ficld uniform in magnitude and direction. It corresponds to the classi-
cal limit of the partition function, which has been adequate for a host of experiments
dealing with weak ficld-induced orientation, such as Kerr effect measurements. Quan-
tum cffects become substantial, however, in the strong-ficld, low-temperature regime
cxplored in recent experiments! ~ ', Numerical calculations arc straightforward but
tedious since for large w and small o many pendular cigenstates typically contribute.
We find that Pitzer’s method again proves useful; it provides an analytic approximation
that surplants numecrical computations for much of the range exhibiting marked quan-
tum cffects.

The orientation of the molecular dipole is specified by the expectation value of the
cosine of the angle between the dipole axis and the field direction, {cos 0). According
to the Hellman—Feynman theorem, this can be evaluated for a given state from the
w-dependence of the cigenenergy: (cos 0); = [-d(E;/B)]/dm. In general the derivative

S/R |

Fic. 7
Entropy, S/R, for a spherical pendulum as a function of reduced temperature, computed from Eq. (13)
with factors listed in Table I, for o = 0, 5, 20, and 100. Dashed curves show the harmonic librator
(HL) limit
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must be computed numerically, but for the harmonic librator limit (0 — ) we obtain
from Eq. (3) a simplc result,

N+1

(cosO)y = 1 - W

(15

The ensemble average, ({cos 0)), of the oricntation cosine for this limit then can be
calculated from

{{cos 0)) = i (cos O)y % , (16)

where ny is the occupation number of the N-th level, given by Eq. (4).
Hence
_ )2
U= $ v 12 e, (17)

w)'? &,

{cos0)) = 1 -

The sum over the librator levels can be derived from a geometric series; with x =e™, it

d X _ (+x)
dx { (1 -x)? ] — (1-x)*" (18)

is given by

Thus we find for the ensemble average in the harmonic librator limit,

C/R L

0.5

0.1

FiG. 8
Heat capacity, C/R, for a spherical pendulum as a function of reduced temperature, computed from
Eq. (13) with factors listed in Table I, for w = 0, 5, 20, and 100. Dashed curves show the harmonic
librator (HL) limit
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oth (1/2
({cos0)) = 1 - &(2(:)()“1—/2) (19)

This requires  large but holds for any 9 by letting 9 grow such that « = (2m)"2/y — 0,

we obtain the classical limit, where coth (1/2) — 2/u. The ratio of Eq. (19) to this limit

is

a - (u/2) coth(u/2)
a-1 '

T, u) = (20)

We apply Pitzer’s method by multiplying the classical ensemble average, given by the
Langevin—-Debyc formula, by the I'y-ratio and thereby have

{{cos 0)) = ( cothaw - :l; ) T, 1) . @n

The correction factor T'y < 1, since for all « > 0 the quantity (1/2) coth (1/2) > 1.
However, our cxpression for I'y is only adequate for o large enough to enable o to
substantially exceed both (1/2) coth (1/2) and unity. Elsewhere we simply set 'y = 1 or
cxtrapolate smoothly to the Langevin—-Debye curve. However, the latter is very well
approximated by (« - 1)/a for o > 2, so coincides with the classical librator limit (1 — 0)
there. In that range, Eq. (217) thus reduces simply to the quantum harmonic librator limit
of Eq. (19).

Figure 9 displays this approximation for m = 10, 20, 100. The chicf effect is simply
a “rounding-off” of the Langevin—-Dcbye result at large «. This rounding becomes less

FiG. 9

Ensemble average of orientation cosine,
{{cos 0)), as a function of a0 = pg/kT, ac-
cording to the classical Langevin-Debye
formula with and without the approximate
quantum correction of Eq. (27). Also shown
arc curves obtained from the second-order
perturbation theory (PT, dotted) and from
both quantum (QL) and classical (CL) ver-
sions of the harmonic librator limit
(dashed), at @ = 10, 20, and 100. A numeri-
cal calculation (“Exact™) is also shown for
m = 20; this coincides with Eq. (27) within
the thickness of the plotted curve

{(cos 6))
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pronounced as o incrcases. We find agreement with numerical calculations is good for
® = 20. The utility of Eq. (21) rapidly deteriorates for smaller w, but in that range
numerical calculations become less onerous.

Field-Induced Shifts of Chemical Equilibria

The factorization provided in Eq. (8) by the Pitzer approximation facilitates evaluating
cquilibrium constants for reactions of dipolar molecules in the presence of strong exter-
nal fields. The cquilibrium constant for a chemical reaction thus takes the form
KoK, (0,9), where K, denotes the constant that pertains in the absence of the field. The
factor K,(,%) has the same form as the usual equilibrium product but with the partial
pressure or concentration [j] of each dipolar specics replaced by

e % sinha; u;
- i yi
X

¥ l1-¢

2
- ) : 22)

For cach spccies that does not interact with the ficld, the [j]-factor is replaced by unity.
Examples include three types of exchange reactions of diatomic moleculcs.

A + BC < AB + C K; = Kap/Kpc @A)
A, + B, <> 2AB K, = (Kap)’ B)
AB + CD < AC + BD Ky, = KacKon/Xas Ko ©)

Type (B) is typically expected to exhibit the strongest ficld dependence, since in (A)
and (C) the factors tend to balance out. In (B), since at a given temperature the free
cnergy of the dipolar product AB increases, the reaction will be inhibited as  in-
creases. Figure 10 displays the functional dependence of the K, (0,9) factor. For in-
stance, the curve for m = 10 pertains to I, + Cl, < 2 ICI at a ficld strength of about
50 kV/cmy; the reduced temperature scale for ICI is such that the minimum of the curve
(at 7 ~ 5) comes at about 1 K. Thus, ficld induced shifts of such equilibria are typically
quite small. Such shifts can become significant if cxceptionally low tempceratures can
be attained (perhaps for reactions occurring in a supersonic expansion) or cxceptionally
large ratios of u/B (as for large, very polar molecules).
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DISCUSSION

Our chicf motivation has been to provide means to readily estimatc thcrmodynamic
propertics for gas-phase molecules subject to strong cxternal fields at relatively low
temperaturcs. Both the method and results scem likely to find wider application. The
simplicity and accuracy afforded by Pitzer’s procedure, correcting the classical parti-
tion function by the harmonic oscillator ratio, reccommended it for many problems in-
volving strong perturbations. The results obtained here for pendular molecules are
applicable also to condensed phase systems if interactions among the molccules are
much less significant that with the external ficld.

The pendular functions may indced even prove uscful in modeclling the effect of
intcrnal ficlds exerted by ncighbors in a liquid or solid. The tumbling of a lincar mole-
cule in a condensed phase is more aptly represented by a spherical rather than a planar
pendulum. At low temperatures or high density, the molecules in condensed phases are
chicfly confined to librational or jostling motions, with occasional excursions to ad-
jacent potential minima. This is much like hindered internal torsion within molecules
such as cthane. The hindering potential barrier is not a constant, however, but depends
on the orientation and density of packing of ncighboring molecules. As the temperature
is increased or density lowered, the jostling increasingly turns into tumbling. Heat ca-
pacity curves of molecular solids often show anomalics resembling the bumps seen in
Fig. 8, although sometimes much sharper. These arc usually attributed to a rather sud-
den transition from librational to rotational motion. The sharpening stems from the
cooperative cffect of the mutual rotation of neighboring molecules, which weakens the
hindering potential and so makes the transition occur more abruptly. The cooperative
behavior thus might be simulated by averaging over a range of the w-parameter. In such
ways, the casily evaluated pendular properties may scrve to inducce uscful hybridization
among treatments of many dynamical phenomena involving inhibiting but pliable barricrs.

ks
A2+By32AB
1
@=10
20
0.1 F 4 ]
FiG. 10
100 Field-dependent portion of equilibrium con-
stant K, for reactions of type (B) as a func-
0.01 L L tion of reduced temperature 9 and reduced
! 10 100 - 1000 fic1d strength @ = 10, 20, and 100
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